Rabbitholes Conversation

Object type Prompt

Tag [auADHD

Backlinks Investigate RabbitHoles

I'm someone with auADHD looking at different ways to help myself with my
workflows, creative ideas, information sources and ways to bring it all
together into a context where | can leverage it all to get things done. I'm a
software engineer and a tinkerer and lately have felt like | am drowning in
information and options. My preferred platform for PKM and tasks is AnyType
because of it's object first design that helps enforce structure. | just
discovered Rabbitholes Al and it seems to fill in a lot of gaps in my workflow.
With my background in mind, could you give me a synopsis of the tool and it's
benefits and weaknesses, as well as any integrations it allows?
https://www.rabbitholes.ai/

It is completely understandable that you are feeling overwhelmed. For someone with
ASD and ADHD, the sheer volume of available tools and the "paradox of choice" can
be paralyzing, especially when your brain is wired to crave deep structure (ASD) but
struggles with executive function and regulation (ADHD).

As a software engineer and tinkerer, you likely view your workflow as a system
architecture problem. You have found your "Database" in AnyType (structured, object-
oriented, relational). Now, it seems you are looking for the "ETL" (Extract, Transform,
Load) pipeline—a way to ingest messy web data, clean it, and move it into your
structured system without getting lost in the noise.

Here is a synopsis of Rabbitholes Al, analyzed through the lens of your specific
workflow and neurotype.

It is essentially a state tree for conversations. Instead of a linear log (like standard
ChatGPT), it treats a dialogue like a git repository—allowing you to fork a
conversation, explore a tangent, and merge back or discard the branch.

Here is the corrected synopsis and analysis through the lens of an ASD/ADHD
engineer using AnyType.

Synopsis: The "Git for Thought"

What it is: Rabbitholes Al is a visual interface for Large Language Models (LLMs) that
structures conversations as a non-linear branching tree. It is a standalone application
where you bring your own API keys (OpenAl, Anthropic, etc.).

The Core Mechanism:

e Linear vs. Branching: In a normal chat, if you have a new idea, you lose the old
context or have to start a new thread. In Rabbitholes, you "branch" off from any
specific message.

¢ Visual Mapping: It visualizes these branches as a node graph. You can see the
"trunk" of your main idea and the "twigs" of your tangents.

Benefits (For the Neurodivergent Engineer)

1. Managing "Context Switching" via Branching (ADHD)

ADHD brains often experience "popcorn" thoughts—ideas that jump around rapidly. In
a standard chat, this looks like chaos. In Rabbitholes, you can instantly branch off
when a tangent hits.

e Example: You are discussing a Python backend architecture. Suddenly, you
wonder about a specific Rust implementation. You branch off, research the Rust
tangent for 5 minutes, realize it's a dead end, and collapse that branch. You return
to the Python conversation exactly where you left off, without losing flow.

2. Preserving Logic Trees (ASD)
For someone with ASD who values systemization, the linear "stream of
consciousness" in standard Al chat models is frustrating because it buries the logic.

Rabbitholes forces the Al to show its work in a structure. It mirrors the decision-making
trees or flowcharts you likely use in software architecture.

3. Cost & Privacy Control (The Tinkerer)

Since it is BYOK (Bring Your Own Key), you aren't paying a subscription markup to the
Rabbitholes developers. You pay OpenAl/Anthropic directly. This is highly attractive for
engineers who want raw access to the API without "vendor lock-in" or platform bloat.

Weaknesses

1. The "Flatness" of Exporting to PKM
Your goal is to get this into AnyType. AnyType is object-first. Rabbitholes is graph-
first.

e The Problem: When you export a conversation tree, it usually exports as a linear
text file (Markdown) or a static image of the graph. It doesn't natively export
"Branch A" and "Branch B" as linked AnyType objects. You will likely have to
manually copy-paste specific branches into specific AnyType objects.

2. Cognitive Load of APl Management

While BYOK is great for cost, it requires executive function (managing keys, checking
balances on OpenAl, ensuring the key isn't compromised). If you are in a low-energy
or burnout state, having to deal with APl key management can be a friction point.

3. No "Grounding" in Your Files

Unlike tools like NotebookLM or ChatPDF, Rabbitholes is purely a conversation
interface. It doesn't natively index your local codebase or your AnyType database to
"chat with your data." It is a tool for generating thoughts, not querying your existing
knowledge.

Revised Integration Strategy for AnyType
Given the correction, here is how you would actually use Rabbitholes with AnyType:

1. The Sandbox (Rabbitholes): Use Rabbitholes for "Blue Sky" thinking. You are
brainstorming a new feature or algorithm. Let the branches run wild. Follow the
ADHD tangents. Use the BYOK to run cheap/fast models (like GPT-3.5-Turbo or
GPT-40-mini) for rapid branching.

2. The Pruning (Manual): Look at your graph. Identify the "Golden Path"—the branch
that yielded the best result.

3. The Commit (AnyType): Copy the text from that specific branch.
e Paste it into AnyType as a Log/Entry object.

¢ |f you have multiple good branches, create multiple objects and link them to
a "Project" object in AnyType.

e Essentially, you are treating Rabbitholes like a git working directory and
AnyType like the main repository.

Conclusion:

You are right to look at this tool. For an engineer, the ability to "fork" a conversation is a
powerful metaphor. It mitigates the ADHD fear of losing a good thought by allowing
you to safely isolate tangents, and it satisfies the ASD need for structural integrity in
your logic.

Here is the revised "Input vs. Storage" workflow tailored to Rabbitholes Al (The
Branching Chat Tool) and AnyType:

The Workflow Strategy: "RAM vs. SSD"

Treat Rabbitholes as your volatile RAM (Processing/Exploration) and AnyType as
your SSD (Structured/Relational Knowledge).

1. Capture (The Setup in Rabbitholes)
Instead of opening tabs, you initiate a "Root Node" conversation.

e Action: You open Rabbitholes and define the scope. Prompt: "l am designing a
new App Architecture. | need to compare Supabase vs. Firebase for the backend."

e The Goal: Establish the trunk of the tree.

2. Synthesize (The Branching/Processing)

This is where the tool shines for ADHD/ASD. You do not think linearly here—you let the
tree grow.

e Branch A (The Deep Dive): You drill down into Supabase authentication flows. You
ask for code examples.

e Branch B (The Tangent): You get distracted by "Realtime subscriptions." You
branch off to explore that.

e Branch C (The Alternative): You backtrack to the root and branch off to explore
Firebase.

e The Pruning: You look at the visual graph. You realize Branch C (Firebase) doesn't
fit your needs, so you delete/collapse it. You realize Branch B was just a curiosity,
so you keep it but mark it as "Reference."

e The Outcome: You are left with a clean path (Branch A) that contains the logic,
code snippets, and architectural decision you actually need.

3. Export (The Bridge)

You are no longer exporting a summary of web pages; you are exporting the output of
your reasoning.

e Action: You select the final "Node" or the specific thread of conversation that
holds the valuable insight (the code snippet, the final decision, the architectural
diagram).

e Format: Copy the text/Markdown.

e Note on API: Since you used your own key, you can afford to have run a "heavy"
model (like GPT-40) here to ensure the code is high quality before moving it.

4. Structure (The Commit to AnyType)
This is where you turn the "volatile conversation" into "permanent knowledge objects."
e Action: Paste the distilled content from Rabbitholes into AnyType.
e Object Creation:
e Name: ADR: Backend Selection (Supabase)
e Type: Research Note or Architectural Decision Record.
e Relation: Source - "Al Brainstorm via Rabbitholes".
e Relation: Project - "New App Architecture".

e Linking (The Power of AnyType):
¢ |f the Rabbithole session produced a to-do item (e.g., "Research Row Level
Security"), create a Task Object in AnyType.
e Link that Task Object to the Research Note Object.

e Now, when you look at the task in AnyType, you have the full context of why
that task exists, linked back to the research you did in the "RAM."

Why this fits your profile:

e ADHD: The branching allows you to follow the "shiny object" (Branch B) without
ruining the main thread. You can "hyperfocus" safely in the sandbox and then
close the tab when done.

e ASD: You get to see the logic tree. You can verify that you checked Option X and
Option Y before deciding on Option Z. It provides a visual proof of diligence.

e Engineer: You are treating the Al chatas a git flow. Rabbitholes is your
feature/branch where you experiment; AnyType is the main branch where
you merge the stable code.

| have a few more tools to "level up" this process even more if they add value
for the complexity they introduce. These are tools that | am already using in
my workflows so | will add them here. They may compliment the workflow
and enhance the end result, full disclosure | host my own services so privacy
is not an issue.

Selfhosted tools list
e Readeck https://readeck.org/en/
e Forgejo https://forgejo.org/
e cb_thunderlink https://camiel.bouchier.be/en/cb_thunderlink
e n8n https://n8n.io/
e tuwunel - https://github.com/matrix-construct/tuwunel
e Open WebUI - https://openwebui.com/
o ByteStash-hitps:ffgithub-comfjordan—datbyfByteStash
e binvautthttps:f/github-comfovereuriousity/bitvault/
e ntfy https://ntfy.sh/
e grafana https://grafana.com/grafana/dashboards/
e kanidm https://kanidm.com/

e vaultwarden https://github.com/dani-garcia/vaultwarden

The ultimate goal is to unify the tooling into a workflow to enable creativity,
document process, track progress, and eliminate toil. All with the auADHD
engineer in mind, to decrease anxiety, supplement executive function and
offer interventions for the gaps present in neuro-divergent individuals. The
largest challenge is to avoid the fragmentation that causes the metal vapor-
lock that options create, and to eliminate the friction of capturing ideas and
data so they can be acted upon to provide value.This was the goal of
combining rabbitholes.ai and AnyType as a hub or backbone, the other tools
facilitating actions that can be offloaded to make the process, secure and
easier to use, without overwhelming the user.

This is a sophisticated stack. As a fellow engineer, | look at this list and see a "Personal
Operating System" rather than just a set of tools. You have the Identity (Kanidm), the

Security (Vaultwarden), the Infrastructure (Grafana/Tuwunel), and the Logic
(n8n/Forgejo).

The danger, as you rightly identified, is Fragmentation. If you have to check 10 places
to do one thing, your ADHD brain will engage in "task switching" rather than "task
execution," leading to vapor-lock.

To "Level Up" without breaking the flow, we must ruthlessly assign a single, specific
Responsibility to each tool within your RAM/SSD architecture.

Here is how to integrate your stack into a unified "Neural Workflow" designed to
minimize friction and maximize retention.

1. The "Invisible Layer" (Plumbing)
Goal: Reduce anxiety by knowing things just work.
e Kanidm, Vaultwarden, Grafana, Tuwunel:
¢ Role: Background services.

e Advice: Do not integrate these into your daily creative flow. They are
infrastructure. Knowing they are self-hosted and secure satisfies your need
for privacy, but they should not require daily interaction. Configure them
once, set up Grafana alerts only for critical failures, and forget them.

2. The "Buffer" (Input Triage)
Goal: Eliminate the friction of "I'll read this later" and the anxiety of losing it.

e Readeck: This is your Web Triage.

e The Workflow: When you find a long article or documentation, do not read it
immediately. Throw it in Readeck.

¢ The Connection: Readeck is where you strip ads/clutter. If the content is
high value, you process it in Rabbitholes.

e cb_thunderlink (Thunderbird): This is your Comms Anchor.

e The Workflow: Emails are often task generators or requirements
documents.

e The Connection: When an email requires action, generate a
thunderlink:// URL. Paste this link into an AnyType Task Object. Now,

AnyType is your hub; the email is just a referenced resource.

3. The "Processing Layer" (Volatile RAM)

Goal: Explore, Branch, and Synthesize without leaving the context.

e Open WebUI: This is your Al Engine.

e The Upgrade: Rabbitholes is the Interface (Branching), but Open WebUI is
the Brain. Since you host Open WebUI, you can likely point Rabbitholes to
your local Open WebUI instance (using the OpenAl compatible API
endpoint).

e The Benefit: You get Rabbitholes' visual branching structure + Open
WebUI's local privacy and model control. This means your "RAM" is entirely
local and private.

e Rabbitholes Al:
e The Workflow: Deep thinking, coding logic, and architectural debate.

e The Connection: You stay here until the thought is "crystallized."

4. The "Execution Layer" (Doing)
Goal: Turn thoughts into code.
e Forgejo: This is your Code Repository.
e The Workflow: Do not keep your code in AnyType. Keep it here.

e The Connection: Use n8n to watch Forgejo. When you push a commit or
close an Issue, n8n can update a "Project Status" object in AnyType.

e ByteStash / binvault:

e The Risk: These create fragmentations. AnyType has code blocks. Why use
these?

e The Exception: If you need to access snippets via API from your IDE, keep
them. Otherwise, migrate to AnyType. Keep your snippets next to the
documentation of how to use them (in AnyType) to reduce context
switching.

5. The "Integration Layer" (The Nervous System)
Goal: Offload executive function (remembering to move data) to automation.

e n8n: This is your Automated Butler.

e Why it helps ADHD: You won't remember to "Move the link from Readeck to
AnyType." n8n does it for you.

e ntfy: This is your Ping.

e Why it helps ADHD: You might hyperfocus and forget a meeting or a
priority. ntfy brings you back.

The Unified Workflow: "The Neural Loop"

Here is how these tools flow together in a single, unified process to prevent vapor-
lock.

Scenario: "l need to implement a new Login feature."

Phase 1: Capture (The "Oh, | need to do this" moment)

1.

oA W N

Email comes in (Thunderbird) with requirements.

You copy the cb_thunderlink of the email.

You open AnyType and create a new Object: Task: Implement Login.
You paste the thunderlink:// into the "Reference" field.

Result: The email is safely referenced. You can close Thunderbird.

Phase 2: Research & Ideation (The RAM)

1.

oW

S.
6.

You find 4 blog posts about OAuth2. You save them to Readeck.
You open Rabbitholes Al (pointed at your local Open WebUI).
You paste the content of the blogs (or summarize them) into Rabbitholes.
You start branching:
e Branch A: "How does this work with our current DB?"
e Branch B: "What are the security implications?"
You settle on a logic flow. The Al generates a code snippet.

Result: You have a synthesized plan and code snippet, but it's still volatile "RAM."

Phase 3: Automation (The Bridge)

Low-Tech Option: You copy the plan/snippet from Rabbitholes and paste it into the
AnyType Task object created in Phase 1.

High-Tech Option (n8n): You hit a webhook in Rabbitholes (if available) or use a
browser extension to "Send to n8n."

¢ n8n Workflow: Receives text - formats it = Appends it to the AnyType
Object.

e ntfy Alert: Sends a push to your phone: "Research for Login Task captured.”

Phase 4: Execution (The SSD & Code)

1.

2.

You open Forgejo and start coding, referencing the AnyType Object (which has the
email link and the Rabbitholes plan).

You push the code.

3. n8n detects the commit (Webhook from Forgejo).
4. n8n updates the AnyType Task status to "In Progress" or "Done."

5. Result: Your project status is updated automatically. You don't have to remember
to "mark it done."

Summary of Levels

Tool Role Why it helps ADHD/ASD

AnyType The Hub Single source of truth.
Reduces anxiety of "where is
that info?"

Rabbitholes + Open WebUI The Lab Visual branching contains

tangents. Local models
remove privacy anxiety.

Readeck + Thunderlink The Inbox Catch-alls that prevent tabs
from multiplying.

n8n + ntfy The Hands Automates the boring
"moving data" parts. Ntfy
acts as an external executive
function cue.

Forgejo The Hammer Where the actual work
happens.
ByteStash/binvault REVIEW Recommendation:

Consolidate into AnyType to
reduce silos unless strictly
needed for APl access to
code.

Final Advice: The complexity you fear comes from having too many "Dashboards." By
making AnyType the only dashboard you look at for "Work," and letting n8n handle the
communication between the other tools, you turn a fragmented pile of software into a
single, cohesive machine.

| can completely relate to this "stack" and understand how it maps onto the
process to achieve the goals. As long as the API between all the parts is rich
enough it should be manageable. Do you see any gaps? | feel like there are

bits of project management presented but nothing that really binds them
together. AnyType is great for representing data as objects and allowing you
to create relationships between them. It does a relatively good job of
abstracting the display from the raw objects, but it is far from a
"management" tool when it comes to tasks, deliverables, and timelines. |
generally use this as a source for a catalog of self-hosted solutions:
https://noted.lol/

You have hit the nail on the head. This is the exact friction point that causes "tool
fatigue." AnyType is an incredible database, but it is not yet a robust Project
Management (PM) suite.

It lacks native features like:

e Gantt Charts / Timelines: Visualizing how long a task actually takes versus when
it's due.

e Burn-down Charts: Tracking velocity (crucial for managing ADHD expectations
about how much you can do).

e Sprint/Cycle Management: Grouping tasks into time-boxed "focus" periods.

To fill this gap without leaving the self-hosted ecosystem, you need a dedicated PM
Layer that sits "above" AnyType.

Based on your preference for the noted.lol ecosystem, here are the two best
candidates to bridge the gap, along with how to integrate them.

The Contenders

1. Plane (The "Linear" Clone)

URL: plane.so (Self-hostable)
Best for: Software Engineering workflows.

e Why it fits you: Plane is designed specifically for developers. It feels like a
modern, open-source version of Linear or Jira. It handles "Cycles" (Sprints),
"Modules" (Features), and "Roadmaps" beautifully.

e The Strength: It has a very clean, fast interface which reduces cognitive load
(good for ADHD). It offers GitHub/Forgejo integration out of the box.

e The Gap Fill: It provides the Timeline and Roadmap views that AnyType lacks.

2. Vikunja (The "Todoist/Jira" Hybrid)

URL: vikunja.io
Best for: General Task Management & Kanban.

https://plane.so/
https://vikunja.io/

e Why it fits you: It is the ultimate "bento box" organizer. It handles lists, Kanban

boards, and Gantt charts (via a plugin). It is less "developer-specific" than Plane

and more "life-hack specific."

e The Strength: It is excellent at recurring tasks and due dates, which are often
executive function blind spots for ADHD.

e The Gap Fill: It provides the nitty-gritty date tracking and calendar views.

The Verdict: Go with Plane

Since you are a software engineer managing codebases and creative workflows,

Plane is the missing link. It respects the complexity of software development without

the bloat of Jira.

Integrating Plane into the Stack

We need to insert Plane between AnyType (Context) and Forgejo (Code).

Revised Architecture: The "Management Layer"
1. Context & Knowledge (AnyType): The "SSD".
e Holds: Specs, meeting notes, Rabbitholes research, documentation.
e Does: Explains Why we are doing something.
2. Management & Planning (Plane): The "Traffic Controller".
e Holds: Sprint schedules, milestones, bug tracking, high-level task lists.
e Does: Defines When and Who (even if "who" is just you).
3. Execution (Forgejo): The "Factory Floor".
e Holds: Code, PRs, CI/CD pipelines.

e Does: The actual work.

The Automation Glue (n8n Workflow)

To prevent the "vapor-lock" of switching between three tools, you need n8n to
synchronize state so you only have to look at Plane during the workday.

Workflow: The "Context Bridge"

1. Trigger: You create a Task in AnyType (because you had an idea while
researching).

e Action: n8n detects the new Object.

2. Action: n8n creates a corresponding Issue/Task in Plane.

e Data: It syncs the Title and a link back to the AnyType Object in the
description.

3. Update: You drag the Task to "In Progress" in Plane.
e Action: n8n updates the Status in AnyType (via the API).

4. Execution: You create a branch in Forgejo linked to the Plane issue (Plane does
this natively if connected).

5. Completion: You close the PR in Forgejo.

e Action: Plane marks the task as "Done". n8n marks the AnyType object as
"Completed".

Summary of the Gap Solution

Feature AnyType (Current) Plane (The Gap) Forgejo (Current)
Core Function Knowledge / Wiki Project Management = Code Repository
Time View None (Limited Gantt, Roadmap, None
filtering) Cycles
Task List Flat / Relational Hierarchical / Agile Issue Tracker
Executive Function Captures ldeas Schedules & Executes
Prioritizes

Why this eliminates anxiety

1. Single Pane of Glass: You live in Plane during the workday. You see what needs to
be done now.

2. Drill Down: When you get stuck or forget why a task exists, you click the link in
Plane to open the AnyType object (your context/Rabbitholes).

3. Deep Work: When you are ready to code, you click the Forgejo link in Plane.
4. Self-Hosted Harmony: All data stays on your metal.
This completes the triad:

e AnyType = Memory (Hippocampus)

® Plane = Planning (Prefrontal Cortex)

e Forgejo = Action (Motor Cortex)

| will PoC plane in my current ecosystem. Can you develop a detailed action
plan to glue these pieces together? They need to act as a cohesive unit that |
can begin using to manage my day to day workflows and deliverables?
Including the following:

e APIs required

e any "glue" language we need to tie things together

e any monitoring/observability/alerting/reporting we should consider
® any other weak areas that need to be addressed

This is a "Systems Engineering" project now. You are building a Personal Productivity
Platform. Like any good PoC, we will break this down into phases to ensure we don't
get blocked by integration hell.

Here is the detailed action plan to glue AnyType, Plane, Forgejo, and n8n into a
cohesive unit.

Phase 1: The Developer Core (Plane + Forgejo)

Objective: Establish the "Execution" and "Planning" link first. This is the most reliable
integration and provides immediate value.

1. Setup Plane & Forgejo Integration
Plane has native Git integration. Do not use n8n for this specific link yet; use the native
tools to reduce latency.

e Action: In Plane, goto Settings > Workspace > Git Integration.
e Connect: Add your Forgejo instance (via URL and Personal Access Token).
e Mapping: Map specific Plane Projects to specific Forgejo Repositories.

e Result: When you create an Issue in Plane, you can create a branch in Forgejo
directly from the Ul. When you open a PR in Forgejo, Plane automatically attaches
it to the Issue.

2. Define the "State Machine"
To manage your ADHD anxiety, you need to know what "Done" looks like. Agree on
these status mappings:

e Plane: Backlog - Planned (AnyType) - Started - In Review (Forgejo
PR) > Done.

e Action: Configure these states in Plane.

Phase 2: The Knowledge-Planning Loop (AnyType + Plane + n8n)
Objective: The critical bridge. Making your Ideas (AnyType) appear as Tasks (Plane).

1. Schema Modification in AnyType
This is the most important structural change. We need a place to store the "Foreign
Key" so the tools can talk to each other.

e Action: Open your Task Object Type in AnyType.
e Add Field: Plane Issue ID (Type: Number or String).
e AddField: Plane Issue URL (Type: URL).

2. The "Create Task" Workflow (n8n)
Trigger: New Task created in AnyType containing a specific Tag (e.g., #Project).
Logic:

1. Listen: n8n polls AnyType (or uses a webhook/event trigger if supported by your
version of the middleware) for new objects.

2. Filter: Check if the Task has the #Project tag. (Ignore "Buy Milk" tasks).
3. Transform: Extract Title, Description, and Due Date.

4. Action (HTTP Request): Call the Plane API (POST
/api/vl/workspaces/{slugt/projects/iid}/issues/).

e C(Create the issue in Plane.
5. Callback: Receive the id and url of the new Plane issue.

6. Update: Call the AnyType API to update the original Object with the Plane Issue
ID and Plane Issue URL.

e Result: You now have a permanent link between the Knowledge (AnyType)
and the Management (Plane).

3. The "Status Sync" Workflow (n8n)
Trigger: Webhook from Plane (Issue Updated).
Logic:

1. Listen: n8n receives a webhook from Plane when an issue moves to "Done".

2. Search: n8n looks up the AnyType Object using the stored metadata (or searches
for the Task name).

3. Action: Update the Status relation in AnyType to "Completed".

® Result: Your Knowledge Base stays in sync with your actual progress
without you touching it.

Phase 3: The APIs & Glue Language
Objective: Technical specifics for the tinkerer.

The Glue Language: JavaScript (Node.js)

While n8n is low-code, you will need JavaScript functions inside n8n nodes to handle
data mapping (e.g., mapping AnyType's specific date format to Plane's ISO 8601
requirement).

Required API Endpoints:

Tool API Purpose Key Endpoints

AnyType Read/Write Knowledge POST /graphqgl
(Middleware) or internal
Protobuf via the n8n node.

Plane Read/Write Tasks POST /api/vl/issues/,
PATCH
/api/vl/issues/{id}/,
GET /api/vl/issues/

Forgejo Read Repo Status GET
/api/vl/repos/{iownert /3
repo}/pulls (Used for
monitoring)

n8n Orchestration Webhook triggers (Ingest) +
HTTP Request nodes
(Egress)

Critical Note on AnyType API:

AnyType's APl is currently their "Middleware" which is still evolving. Ensure you check
the n8n community nodes for AnyType. If the official node is buggy (which is common
in PoCs), your "Glue" fallback is using n8n's HTTP Request node to hit the local
AnyType port if exposed, or simply sticking to Unidirectional Sync (AnyType - Plane)
and accepting that Plane doesn't write back to AnyType automatically yet.

Phase 4: Observability, Alerting & Reporting
Objective: Supplementing Executive Function.

1. "Nudge" Alerts (ntfy)

e Workflow: Use n8n to scan Plane for tasks due "Tomorrow" or "Overdue" where
Assignee is You.

e Action: Send a push notification via ntfy to your phone/desktop at 9:00 AM daily.
e Message: "4’ Focus: [Task Name] is due. [Link to Plane]"

2. Dashboarding (Grafana)
You need a high-level view to reduce anxiety. Build a Dashboard in Grafana that
queries the Plane API (or a database Plane writes to, if applicable) and Forgejo.

e Panel 1: "Velocity." Number of Issues closed in Plane (last 7 days).
e Panel 2: "Tech Debt." Number of open Forgejo PRs vs. Closed Issues.

e Panel 3: "ldeas in Flight." Number of AnyType tasks NOT in Plane (The
"Backlog").

3. Health Checks
Ensure n8n monitors itself. If the "AnyType = Plane" workflow fails, n8n should push
an ntfy alert immediately: " 1\ Sync Failed: Task not exported to Plane."

Phase 5: Addressing Weak Areas & Gaps
Weak Area 1: The "Sync Lag"

e The Problem: AnyType is Offline-first. Plane is Online-first. If you add a task on
your laptop on the train, the sync might not happen until you are online.

e The Fix: Accept eventual consistency. The "Source of Truth" for Action is Plane. If
it's in Plane, it exists.

Weak Area 2: "Context Switching" Cost
e The Problem: We have now added a 4th tool (Plane) to the stack.
e The Fix: Browser Tab Management.
e Group 1: AnyType (Reference/Docs) - Open when researching.
e Group 2: Plane (Work) - Open when executing.
e Group 3: Forgejo - Only open when committing code.

* n8n runs in the background; you should rarely check the Ul unless
debugging.

Weak Area 3: APl Complexity

e The Problem: Writing custom HTTP requests to AnyType can be brittle if they
update their schema.

e The Fix: Use an intermediate "Normalization" step in n8n. Instead of mapping API
fields directly, use a "Set" node in n8n to define standard variables (e.g., 11
$json.title %%) before sending to the API. If the API changes, you only fix the

mapping in the HTTP Request node, not the logic.

Summary of First Steps (Immediate Action Items)
1. Deploy Plane: Get it running and log in.
2. Connect Forgejo: Do the native "Git Integration" in Plane settings.

3. Create a Test Task: In Plane, create an issue, link it to a Forgejo repo, and create a
branch. Verify the round-trip.

4. Modify AnyType Schema: Add the Plane Issue ID field to your Task Object.

5. Build the first n8n Workflow: Manual Trigger -> Create AnyType Object -
> Push to Plane -> Update AnyType.

This PoC plan prioritizes getting the Engine (Plane/Forgejo) running before connecting
the Fuel Pump (AnyType/n8n). Good luck.

| would prefer to manage the "glue" code in python as opposed to javascript.
For example this module: https://pypi.org/project/anytype-client/, also the
MCP server might be of use here to close the loop on AnyType context within
rabbitholes : https://github.com/anyproto/anytype-mcp

This is a superior approach for an engineer. Moving the glue logic to Python gives you
type safety, better debugging tools, and access to robust libraries like anytype-
client. It also allows you to treat the automation as a set of microservices rather than

"black box" workflows.

Furthermore, the introduction of AnyType MCP (Model Context Protocol) is a game-
changer. It changes the relationship between your Al (Rabbitholes/Open WebUI) and
your Knowledge Base (AnyType) from "Manual Copy-Paste" to "Live Database Query."

Here is the revised Action Plan using Python and the MCP Server.

The Architecture Shift

We are moving from n8n-centric logic to a Python Service architecture.

e Orchestrator: n8n (kept only for scheduling/triggers, replaced by Python scripts
where complex logic exists).

e Context Layer: MCP Server (allows Al to "read" AnyType).
e Logic Layer: Python Scripts (using anytype-client).

Phase 1: The Al Context Loop (MCP Integration)

Objective: Allow Rabbitholes (via Open WebUI) to "see" your AnyType database in
real-time.

1. Setup the Stack

Since Rabbitholes is an interface, we assume you are pointing it at Open WebUI (which
supports MCP) or using Rabbitholes' native LLM connection to an MCP-capable client
(like Claude Desktop or Open WebUI).

e git clone https://g ithub.com/a nyproto/anytype-mcp.qgit
cd anytype-mcp
Configure with your AnyType credentials/Middleware address
pip install -r requirements.txt
python server.py

2. Connect MCP to Open WebUI

e Action: In Open WebUI Settings - Providers = OpenAl (or your Local LLM),
enable MCP.

e Action: Add the AnyType MCP server URL (usually
http://localhost:port/sse).

3. The Workflow (The "Brain" Upgrade)
Now, when you are in Rabbitholes (connected to Open WebUI), you don't need to
search AnyType manually.

e User Prompt in Rabbitholes: "What was the conclusion of the 'Database
Architecture' meeting?"

e MCP Action: Open WebUI pauses, queries the AnyType MCP server.
e MCP Response: Returns the specific Object/Note from AnyType.
e Al Answer: The Al answers your question using your data.

e Result: Zero friction. You never leave the context of the conversation to find
information.

Phase 2: The Python Glue Logic

Objective: Replace JavaScript/n8n logic with robust Python scripts using anytype-
client.

Prerequisites
Create a virtual environment and install dependencies:
pip install anytype-client requests python-dotenv

Script 1: sync_plane.py (The Bi-directional Sync)
This script will be your "Service." It will run on a timer (cron or n8n).

e Logic:
1. Auth: Authenticate with AnyType (Middleware) and Plane (API Token).

2. Query AnyType: Use anytype-client to query for Objects where Type
= Task AND Status = Backlog AND Tag = #Project.

3. Filter: Check if the object has a Plane ID. If yes, skip.
4. Push to Plane: If no, use requests.post to create the Issue in Plane.

5. Update AnyType: Use client.object.set_relation to update the
AnyType object with the new Plane ID.

e Code Snippet (Conceptual):

from anytype_client import Client, exceptions
import requests

Init AnyType Client
client = Client(wallet_id="YOUR_WALLET", secret="YOUR_KEY")
client.auth.login()

Init Plane Config

PLANE_API_KEY = "..."

PLANE_URL =
"https://plane.yourdomain.com/api/vl/workspaces/.../issuves/"

1. Get Tasks

Note: syntax depends on AnyType client version, this is conceptual
tasks = client.object.search(filter={"type": "Task", "status":
"Backlog"})

for task in tasks:
if not task.relations.get("Plane ID"):

2. Create in Plane

payload = {"name": task.name, "description_raw":
task.description}

response = requests.post(PLANE_URL, json=payload, headers=
{"Authorization": PLANE_API_KEY})

plane_id = response.json()["id"]

3. Update AnyType
client.object.set_relation(
id=task.id,
key="Plane ID",
value=plane_id

Script 2: update_status.py (The Listener)
This script listens to Plane (or is triggered by a Plane Webhook) and updates AnyType.

e Logic:

1. Triggered by webhook.
Parse Plane Issue State (e.g., "Done").

Search AnyType for Object with Plane ID == X.

D>

Update AnyType Object Status to "Completed".

Phase 3: Orchestration & Monitoring
Objective: How we run the Python scripts and watch them.

1. Running the Glue (Systemd)
Since you are self-hosting, don't rely on screen or cron alone. Use systemd to
keep your Python services alive.

e File: /etc/systemd/system/sync-plane.service
e Description: Python script to sync AnyType to Plane.
e ExecStart: /usr/bin/python3 /path/to/sync_plane.py
e Restart: always

2. The "Pulse" (Health Check with ntfy)
Add error handling to your Python scripts to push to ntfy if the API fails.

e import requests

def send_alert(message):

requests.post("https://ntfy.yourdomain.com/my-alerts",
data=message.encode(encoding="utf-8'))

try:
... sync logic ...

except Exception as e:
send_alert(f"CRITICAL: Sync Script Failed - {str(e)}")

Phase 4: Addressing Weak Areas with Python
Weak Area: Error Handling & Idempotency
e The Issue: API calls fail. Networks hiccup.

e The Python Fix: Implement idempotency keys in your Plane API calls (if supported)
or check for existence before creating. Wrap all network calls in tenacity (a
Python retrying library) to handle transient network errors without stopping the
script.

Weak Area: Data Mapping Complexity

® The Issue: "Backlog" in AnyType might be "Todo" in Plane.
e STATUS_MAP ={

"Ba cklog": "backlog",

"In Progress": "started",

"Done": "done"

}

Summary of the New Stack

Component Role Tech

The Ul Visual Chat / Branching Rabbitholes Al

The Context Knowledge Store AnyType + anytype-mcp
The Manager Project Management Plane

The Glue Automation / Logic Python (anytype-client

+ requests)
The Runtime Process Management systemd

The Monitor Alerts ntfy

Next Immediate Actions for You

1. Get anytype-mcp running: Connect it to Open WebUI. Try asking it a question
about your notes. This is the "Magic Moment" to look for.

2. Install anytype-client : Write a simple "Hello World" script that lists your Tasks
in the terminal.

3. Draft sync_plane.py : Don't automate it yet. Just write the script that takes a
hardcoded string and pushes it to Plane.

This approach respects your desire to tinker in code (Python) while keeping the
architecture clean and modular.

| think it is probably a mistake to sideline n8n for python logic, and to rely on
systemd and cron. The abstraction of the n8n pipeline/workflow is it's biggest
strength and since one of the major goals with this project is to increase
velocity and creativity while decreasing toil and friction, dropping down to the
systemd/cron level to manage things that could be represented as yaml

workflows seems to move us in the wrong direction. | think the infrastructure
is fine to use systemd/cron/cockpit/socket activation to handle the services
themselves, but the actual touch-points for the creator/developer should
remain as abstracted/automated/templated and full of as many sensible
defaults as possible so we can maintain economies of scale. | also would like
to leverage as much pre-made tooling as possible to keep the cost of
ownership down and avoid tech debt when APIs and libraries change. Do you
think this is a wise choice, and could we refine the plan to take these points
into account? | think python logic has it's place where we absolutely must do
something specific to our process and we need to own it. Otherwise we
should fall back to off the shelf solutions we can not afford to own. Again, the
development team is just one person, me.

You are absolutely correct. | was drifting toward "Infrastructure Engineer" territory—
building custom daemons and managing cron jobs—when you need to be a
"Productivity Engineer." For a solo developer, especially with ADHD, visual abstraction
(n8n) is a force multiplier, while script maintenance is a tax on creativity.

Your instinct to prioritize economies of scale and low cost of ownership is the right
strategic move. If you spend 2 hours fixing a broken Python script, that is 2 hours not
spent building your actual project.

Here is the refined Hybrid Action Plan. It keeps n8n as the "Orchestration Hub" and
only drops down to Python when strictly necessary (inside n8n), ensuring you stay in
the "Flow" rather than the "Terminal."

The Refined Architecture

1. The Foundation (Systemd): Manages the Lifecycle of apps (Start/Stop/Restart). It
does not manage the Business Logic.

2. The Brain (n8n): Manages the Flow, Timing, and Transformations. This is where
you "live" when tweaking workflows.

3. The Specialist (Python): Embedded inside n8n. Used only when the native "Code
Node" or "HTTP Request Node" isn't enough (e.g., complex object mapping for
AnyType).

Phase 1: The "Supercharged" n8n Setup

Objective: Create a containerized environment that allows n8n to speak "Python"
fluently.

Since n8n is self-hosted, you can extend its capabilities without writing external
scripts.

1. The Docker Strategy
Do not use the default n8n image. Create a custom Dockerfile or compose file that
includes the anytype-client library.

e Why: This allows n8n's native "Execute Command" or "Code" nodes to run
Python code using the powerful anytype-client library, all contained within the
visual workflow.

e FROM n8nio/n8n
Install Python and the specific client you trust
RUN apk add —no-cache python3 py3-pip
RUN pip3 install anytype-client requests

2. The "Low Code" Philosophy

* Rule: If n8n has a node for it, use the node. (e.g., Use the native Webhook node,
Merge node, Switch node).

e Exception: Only use a Python "Code Node" if you need to calculate a hash, format
a complex date, or use the anytype-client specifically.

Phase 2: The Logic Workflow (Visualized)

Objective: Create the "AnyType - Plane" sync in n8n using pre-made nodes where
possible.

Workflow Name: Sync Ideas to Projects
1. Trigger (Poll Node):
e Node: Schedule Trigger (Every 15 mins).
e Why: Native, reliable, no cron editing.
2. Fetch Data (HTTP Request Node):
* Node: HTTP Request.

e Action: Call your AnyType Middleware API (GraphQL) to fetch objects
Type: Task AND Status: Backlog.

e Note: We use the HTTP node here because it is standard. If the data is too
complex, we pass it to the next step.

3. The Logic (Function/Code Node):
e Node: Code (Python inside n8n).

® Role: Filter out items that already have a Plane ID.Formatthe JSON
payload to match Plane's APl schema.

e # Simple logic inside n8n
filtered_items = []
for item in $input.all():
plane_id = item.json.relations.get('plane_id')
if not plane_id:
filtered_items.append(item)
return filtered_items

4. Push to Plane (HTTP Request Node):
® Node: HTTP Request.

e Action: POST to Plane API.

e Error Handling: Use the built-in "Continue On Fail" setting or the "Error
Trigger" workflow in n8n. If Plane is down, n8n retries automatically. (You
don't have to write retry logic in Python).

5. Update AnyType (HTTP Request Node):
e Node: HTTP Request.
e Action: Patch the AnyType object with the new Plane ID.

Result: You have a visual pipeline. If it breaks, you look at the n8n Ul, see the red
node, and fix the logic. No log digging in /var/log/syslog.

Phase 3: The "MCP" Context Loop
Objective: Keep this isolated to the Al stack (Rabbitholes/Open WebUI).

This part remains as a Service (Systemd) because it is a long-running server, not a
workflow.

1. Service: anytype-mcp (running via Docker or Systemd).
2. Consumer: Open WebUI (configured to use the MCP server).
3. Interface: Rabbitholes (pointed at Open WebUI).

Note: n8n does not need to touch this. The Al talks to AnyType via MCP. The Project
Manager (Plane) talks to AnyType via n8n. They are parallel streams.

Phase 4: Monitoring & Alerting (The "Set and Forget" Layer)

Objective: Using n8n's native capabilities to reduce anxiety.

1. Self-Healing in n8n
Instead of external scripts, use n8n's "Error Workflow" feature.

e Setup: Create a global workflow triggered on "Error".
e Action: Send a formatted message to ntfy.

e Message: " I\ Sync Failed: Node 'Push to Plane' failed with error 500."

e Benefit: Every single workflow you build inherits this monitoring automatically.
Economies of scale.

2. Dashboarding (Grafana)
Keep this. But instead of scraping logs, scrape the n8n API (it exposes execution
stats).

e Panel: "Active Workflows."

® Panel: "Last Sync Success Time."

Summary of the "Wise Choice"
By keeping n8n at the center:

1. You avoid Tech Debt: When AnyType updates their API from v1to v2, you update
the URL in one n8n node. You do not rewrite and redeploy a Python microservice.

2. You maintain Velocity: You can drag and drop a new integration (e.g., "Add a
Matrix alert when a Task is Done") in minutes, not hours.

3. You reduce Cognitive Load: The visual map is your documentation. You don't
need to remember how script.py works; you just look at the workflow graph.

Final Architecture:
¢ Infrastructure: Systemd/Docker (Keeps the lights on).
e Automation Hub: n8n (Moves the data).

e Deep Logic: Python (Embedded inside n8n, only used for the anytype-client
heavy lifting).

e Knowledge Hub: AnyType + MCP (Feeds the Al).
e Work Hub: Plane (Tracks the deliverables).

This balances your desire to code (Python) with your need to survive (Low
Maintenance). It is the correct path for a solo developer.

This seems to strike the right balance between agility, flexibility, and
complexity with a low maintenance overhead. The n8n ecosystem is large

and offers a lot of opportunities for added functionality from the community.
Making n8n the worker backbone seems wise as well as helps make our
solution future proof. Could you create a detailed project plan to implement all
the pieces in this design and break it down into testable phases that we can
build upon to ensure the foundation is sound?

This is a comprehensive Project Plan designed to build your "Personal Operating
System" incrementally. Each phase builds upon the last, ensuring that if something
breaks, you know exactly where to look.

This plan assumes you are deploying via Docker/Compose for ease of management.

Project Charter: "The Unified Neural Stack"

Objective: Create a self-hosted, low-friction environment that bridges creative
ideation (AnyType/Al) with structured execution (Plane/Forgejo).

Methodology: Agile, Incremental Delivery.

Success Metric: A user (you) can capture an idea in AnyType and see it move to a
deliverable in Plane/Forgejo with zero manual data entry.

Phase 1: The Foundation (Infrastructure & Identity)

Goal: Ensure the "metal" is solid and security is handled before introducing
complexity.

Deliverables:

1. Reverse Proxy: Configure Traefik or Nginx Proxy Manager (if not already done) to
handle SSL termination for subdomains.

2. ldentity Provider: Deploy Kanidm.
e Action: Create user groups (e.g., admins, developers).
e Test: Log in to a dummy service using Kanidm OAuth2/OpenID Connect.
3. Secrets Management: Configure Vaultwarden.
e Action: Store all upcoming API keys and database passwords here.
Definition of Done (DoD):
¢ You can log into Kanidm.
e All subdomains resolve correctly.

e No services are exposed on port 80/443 without SSL.

Phase 2: The "Manual" Core Loop (Data & Code)

Goal: Establish the data storage and verify native tool-to-tool connections before
writing custom code. Do not automate yet.

Deliverables:

1. Knowledge Base: Deploy AnyType.

e Action: Create the Task Object Type. Add relations: Plane Issue ID,
Status, Project.

e Test: Create 3 sample tasks manually.
2. Project Management: Deploy Plane.
e Action: Configure Workspace. Create a Project named "PoC Test".
3. Code Repository: Deploy Forgejo.
e Action: Create a repository named poc-repo .
Integration Test (Manual):
1. In Plane, create an Issue: "Setup PoC".
2. In Plane, use the native Git integration to link this Issue to poc-repo.

3. In Forgejo, verify the branch setup-poc was created (if using the native branch
creation feature) or verify the Issue link exists.

DoD:
e All three core apps are running.

® You can manually link a Plane Issue to a Forgejo Repo.

Phase 3: The Orchestration Engine (n8n + Python Environment)
Goal: Build the automation chassis. This is the most critical technical phase.
Deliverables:

1. Custom n8n Container:

e Action: Create a Dockexrfile for n8n that includes Python 3 and pip
install anytype-client requests.

¢ Action: Build and deploy this container.

2. n8n Hardening:

e Action: Set EXECUTIONS_MODE: queue (using Redis) so workflows don't
time out.

e Action: Configure n8n to use your Timezone.
Python Logic Test (Inside n8n):

1. Create a simple workflow: Manual Trigger - Code Node.

2. Inthe Code Node, write a script to import anytype_client and print "Hello
World".

3. Test: Execute the workflow. Verify the console shows no import errors.
DoD:
e n8nis running with Python support.

e anytype-client is verified working inside the n8n environment.

Phase 4: The "Bi-Directional Sync" (Glue Logic)
Goal: Automate the connection between AnyType and Plane.
Workflow 1: The Creator (AnyType - Plane)

1. Trigger: Schedule Trigger (Poll every 15 mins).

2. Node 1(Get Data): HTTP Request to AnyType Middleware (GraphQL).

e Query: 1 objects(filter: {type: {name: "Task"}, relation:
tkey: "Status", value: "Backlog"ti) ... %

3. Node 2 (Filter): Function Node (Python).
e [ogic: Filter out tasks that already have a Plane ID.

4. Node 3 (Create Issue): HTTP Request to Plane API.

¢ Payload: Create Issue.

5. Node 4 (Update AnyType): HTTP Request to AnyType.
e Action: Update the specific Task Object with the returned Plane ID.

Workflow 2: The Updater (Plane - AnyType)
1. Trigger: Plane Webhook (on Issue Update).
2. Node 1(Search): Function Node (Python).
e [ogic: Search AnyType for Object with Plane ID == incoming ID.

3. Node 2 (Sync Status): HTTP Request to AnyType.

e Action: Update Status in AnyType to match Plane (e.g., "Done" =
"Completed").

DoD:

e Create a Task in AnyType with tag #Project.
e Wait 15 mins.

e Verify it appears in Plane.

e Mark it Done in Plane.

e Verify it marks Completed in AnyType.

Phase 5: The Context Layer (MCP + Al)
Goal: Give the Al "eyes" into your Knowledge Base.
Deliverables:
1. MCP Server: Deploy anytype-mcp service (Systemd or Docker).
2. Open WebUI Config:
e Action: Enable "MCP" in settings.
e Action: Add server endpoint.
3. Rabbitholes Config:
e Action: Point Rabbitholes to your Open WebUI instance.
Integration Test:
1. In AnyType, create a Note: "The secret password for the PoC is Banana123."
2. In Rabbitholes: "What is the secret password for the PoC?"
3. Verification: The Al correctly answers "Bananal23" by querying the MCP server.
DoD:
e Rabbitholes can read AnyType data.

e The loop is closed: Al Context - Knowledge Base - Task List - Code.

Phase 6: Observability & Safety (Monitoring)
Goal: Ensure you know if the system breaks (Intervention for Executive Function).
Deliverables:

1. Global Error Workflow (n8n):

e Action: Configure n8n "Error Trigger" workflow.
e Node: HTTP Requestto ntfy.sh.

e Message: " 1\ Workflow Failed: [Name]".

2. Grafana Dashboards:

e Action: Import "n8n" community dashboard.
e Action: Import "Forgejo" community dashboard.
e Action: Create a "System Health" row showing CPU/RAM of the host.
DoD:
e Stop the n8n container.
e Receive a push notification on your phone within 1 minute.

e Restart container. Verify notification clears.

Summary of Dependencies

e Don't start Phase 3 until Phase 2 is stable. (If you move data targets, you break

automation).

e Don't start Phase 5 until Phase 4 is stable. (If the Al queries old data, it
hallucinates).

Rollback Strategy (For Anxiety Reduction)

Since you are self-hosting, every phase is isolated by Docker containers.

e |f Phase 4 (Sync) breaks: Stop the n8n container. You can still manually copy-

paste. You lose speed, but not functionality.

¢ |f Phase 5 breaks: Disable MCP in Open WebUI. Rabbitholes becomes a standard

chatbot again.

This plan ensures you always have a functioning "floor" to stand on, even if the
"elevator" (automation) is temporarily out of service.

| should have mentioned we are using caddy v2.10.2 as a proxy with the
following modules built in: github.com/sablierapp/sablier-caddy-plugin

github.com/greenpau/caddy-security github.com/mholt/caddy-dynamicdns
github.com/porech/caddy-maxmind-geolocation github.com/sjtug/caddy2-

filter github.com/mholt/caddy-ratelimit github.com/abiosoft/caddy-yami
github.com/corazawaf/coraza-caddy/v2 github.com/mholt/caddy-webdav
github.com/mholt/caddy-14

This changes the game significantly—in a very good way. You are not just running a
reverse proxy; you have a full Edge Gateway stack with Identity-Aware Proxying and

Application Portal capabilities.

Specifically, Sablier (for the app dashboard) and Caddy Security (for the auth
gateway) are the "Killer Features" for your neurodivergent workflow. They eliminate
the "password fatigue" and "URL hunting" that destroy executive function.

Here is the revised Phase 1 and integration strategy, leveraging your specific Caddy
modules to create a "Unified Digital Entryway."

Phase 1 (Revised): The Unified Edge (Caddy + Kanidm)

Goal: Create a single, secure "Front Door" that handles authentication and app
discovery, removing login friction from the daily workflow.

1. Configure Caddy-YAML (Infrastructure as Code)

Since you have the caddy-yaml module, do not edit the Caddyfile manually. Store
your config in Forgejo (e.g., infra/caddy-config.yaml). This ensures your
infrastructure is version-controlled alongside your code.

Conceptual YAML Structure:

Global Options
apps:
http:
servers:
srv0:
listen:
- :443
Enable Caddy Security here
routes:
Route 1: The Identity Provider (Kanidm)
- match: [host id.domain.com]
handle:
- reverse_proxy: {{kanidm_container}}:8443

Route 2: The Application Portal (Sablier)
- match: [home.domain.com]
handle:
- reverse_proxy: {{sablier_container}}:10000

Route 3: The "Protected" Apps (Plane, AnyType, n8n)
- match: [host plane.domain.com, host anytype.domain.com, host
n8n.domain.com]
handle:
This is the magic: Forward Auth to Kanidm
- forward_auth: {
address: {{caddy_security_endpoint}},
, trust_forwarded_headers: true

- reverse_proxy: {{target_service}}:internal_port

2. Implement "The Bouncer" (Caddy Security + Kanidm)

Instead of logging into n8n, Plane, and AnyType separately, you log in once via
Kanidm.

Configuration: Configure the caddy-security module to point to your Kanidm
instance as the OpenID Connect (OIDC) provider.

Action: Create an Access Policy in Caddy Security called "Developer".

®* Rule: email ends_with @yourdomain.com OR groups contains
"developers"”.

Result: Any route protected by Caddy Security automatically checks if you are
logged into Kanidm. If yes, you pass through. If no, it redirects you to Kanidm.
Single Sign-On (SSO) achieved.

3. Deploy the "Dashboard" (Sablier)

This is the most important tool for your ADHD. Sablier provides an "Application Portal"
(like a start page).

Configuration: Configure Sablier to point to your various apps (Plane, Forgejo,
AnyType, Grafana).

Caddy Integration: Map home.domain.com to Sablier.
UX Benefit:

e You wake up.

e You open home.domain.com.

* You see a grid of icons (Plane, Forgejo, etc.) with status indicators (Green =
Online).

® You click "Plane". Caddy Security checks your Kanidm session (already
active) and shoots you straight to the dashboard.

e Zero typing of URLs. Zero password prompts.

4. WebDAV Integration (File Access)

Since you have caddy-webdav , you can map AnyType's file storage (or Readeck's

exports) as a network drive on your local machine.

Configuration: Create a route files.domain.com.

Mapping: Point the root directory to your Docker volume where AnyType stores
blobs or documents.

Benefit: You can drag and drop files directly from your OS into your "Knowledge
Base" volume, and AnyType (if watching the folder) can ingest them.

Updated Project Plan: The "Caddy-Centric" Flow

Phase 1.5: The "Glue" Verification

New Step: Before deploying apps, verify the Auth Loop.
1. Deploy Caddy + Kanidm.

Try accessing a protected "dummy" route.

Verify you are redirected to Kanidm, log in, and get redirected back successfully.

oW

Why: If Auth is broken, automation is useless.

Phase 4 (Revised): n8n and the "Internal" vs "External" Split

With Caddy handling the security, n8n's internal security can be relaxed for efficiency,
or kept tight.

¢ Internal Traffic (Docker Network): n8n - AnyType API (No Auth needed, pure
speed).

e External Traffic (Your Browser): You - n8n Dashboard (Protected by Caddy
Security/Kanidm).

e Benefit: You don't need to manage n8n user accounts. You just give access
to the URL in Caddy Security.

Phase 6 (Revised): Monitoring (Caddy Metrics)
With caddy-security, you get logging out of the box.

1. Grafana Integration: Caddy exposes metrics. Point Grafana at the Caddy admin
port.

2. Dashboard: Create a panel "Auth Failures".

e Why: If you see a spike in auth failures, your Kanidm integration might be
flaky (causing friction), or someone is attacking you.

Summary of How This Helps Your "AuADHD" Profile

1. Sablier = Visual Clarity: Replaces the mental load of "What apps do | have?" with
a visual list.

2. Caddy Security/Kanidm = Reduced Anxiety: You never have to wonder "Did | log
out?" or "What was the password?". The trust relationship is handled by the
infrastructure.

3. Caddy-YAML = Engineer's Comfort: Your proxy config is now a yaml file in a Git
repo. You can diff changes, roll back, and sleep soundly.

This creates a fortress around your creativity: you have a Gatekeeper (Kanidm) that
only lets you in, a Lobby (Sablier) that shows you where to go, and a Butler (n8n) that
does the work while you are inside.

| should also add that | have a makefile for caddy and can build any other
modules into the platform as needed that would help. These are just the
modules that | am currently using. The sablier module was initially for Al
applications running on the Jeston Orin Nano Super 8gb where Open WebUI
is running in order to spin up and down other Al applications like iopaint on
demand with socket activation. We are dealing with relatively limited compute
resources. Every system involved in this project is Linux, mostly Arch or
Manjaro unless another distro is required. The development desktop is the
most powerful system for obvious reasons and has the following stats:

Processor : AMD FX -8350
1 physical processor; 8 cores; 8 threads
Memory : 32758MB (10115MB used)
Machine Type : Desktop

Operating System : Manjaro Linux - Arch Linux

User Name : ctrauma (Scott Dillman)

Date/Time : Tue 23 Dec 2025 05:26:08 PM EST

-Display-

Resolution : 5120x2160 pixels

Display Adapter : NVIDIA NVIDIA GeForce GTX 1060 6GB
OpenGL Renderer : NVIDIA GeForce GTX 1060 6GB/PCle/SSE2
Session Display Server : The X.0rg Foundation 21.1.21

There is a limited budget so the hardware is not current. We are also very
energy/carbon aware and using multiple SBCs for the headless servers. A
mixture of Raspberry Pis of multiple generations all ARM aarch64 and v7, an
AtomicPi which is x86_64, and an odroid XU4 aarch64. This keeps our power
spend low and our carbon footprint small, this is important as environmental
impact and power spend are crucial.

This adds a fascinating constraint layer: Distributed Computing on a Budget. You are
essentially building a "Borg Cube" of heterogeneous hardware. This aligns perfectly

with your values (low carbon, high efficiency) but introduces Architecture Mismatch
risks (x86 vs ARMv7 vs ARM64).

Given the "Salvage/Scavenge" nature of the hardware (FX-8350 is a Vishera chip,
power-hungry for its performance; Atomic Pi is low-power but limited CPU), we must
be surgical about Service Placement.

Here is the Revised Deployment Map and Project Plan, tailored to your specific
"Cluster" topology and energy constraints.
The "Green" Cluster Map

We need to assign workloads based on Compute Requirement vs. Architecture
Compatibility.

Node

Jetson Orin

Atomic Pi

RPi 4/5 (ARM64)

RPi v7 / Odroid

Desktop

Hardware

ARMG64 / 8GB RAM

x86_64 /| Atom CPU

ARMG64

ARMV7/ARM

x86_64 (FX-8350)

Role

Al Hub

Orchestrator

Data Backbone

Storage/Edge

Creator

Workloads

Open WebUI,
Rabbitholes
(Browser), Local
LLMs. Sablier
manages socket
activation here to
keep RAM free for
inference.

n8n (Node), Plane
(Go), Forgejo (Go).
Why x867 Better
compatibility for
complex Docker
images (like
n8n/Python).

PostgreSQL (DB for
all apps), AnyType
Middleware (for
mobile sync), Caddy
(Gateway).

Vaultwarden,
WebDAV (File
hosting), Grafana
Agent. Note: Avoid
heavy app stacks on
v7 due to 32-bit
container support
dropping.

AnyType Client
(GUI), IDE (VS
Code), Browser.
Middleware offload:
Keep files on Pi 4 to
allow Desktop to
sleep.

Phase 1: The "Green" Gateway (Caddy + Hardware Abstraction)

Goal: Use Caddy to route traffic to the correct silicon, handling architecture
differences transparently.

1. The Makefile Build (Custom Module)
Since you build Caddy from source, add github.com/mholt/caddy-14 (which you
have) to handle TCP passthrough for databases.

e Why: This allows your Desktop (AnyType Client) to connect to PostgreSQL on the
Pi 4 securely over the internet without exposing the DB port directly.

2. Caddy YAML for Cluster Routing
Update your YAML to route subdomains to specific internal IPs based on the node.

- match: [host n8n.domain.com]
handle:
- forward_auth: ...
- reverse_proxy: 192.168.1.50:5678 # Atomic Pi (x86)

- match: [host ai.domain.com]
handle:
- forward_auth: ...
- reverse_proxy: 192.168.1.60:3000 # Jetson Orin (ARMé4)

- match: [host db.domain.com]
handle:

- lb_policy: round_robin
- reverse_proxy: 192.168.1.51:5432 # Pi 4 (ARMé4)

3. Power Management (The "Carbon" Feature)
Use your sablier-caddy-plugin extensively here.
e Scenario: You want to check Plane.

¢ Flow: You request plane.domain.com. Sablier sees the Atomic Piis "asleep”

(WOL or container stopped). It wakes the service/container. Once the 200 OK is
received, Caddy proxies you in.

e Result: Your Atomic Pi (which runs the heavy n8n/Plane stack) isn't burning watts
24]7.

Phase 2: The Python Glue (Cross-Compiling for the Cluster)
Goal: Build the n8n environment on the Atomic Pi without melting the CPU.

The Challenge:
The n8n default image is multi-arch, but adding anytype-client (Python) usually

requires a custom build. You cannot build x86 binaries on your ARM Mac/Pi or vice-
versa easily without emulation (slow).

The Solution:
Use the Desktop (FX-8350) as the build farm.

1. Create the Dockerfile on the Desktop.
2. docker buildx build —platform linux/amd64 -t my-n8n-custom:latest .

3. Push/Pull: Push to a local registry on the Pi 4 or save as tar and load onto the
Atomic Pi.

The Python Script (Optimized for Low RAM):
In your n8n Code node (running on Atomic Pi), keep the Python logic lean.

e Bad: Loading the entire AnyType database into RAM to filter.

e Good: Using the API to fetch specific IDs. The Atomic Pi has limited RAM (usually
2GB or 4GB depending on config); n8n is hungry. Be efficient.

Phase 3: The Storage & Sync Layer (Moving AnyType off Desktop)
Goal: True "Headless" capability and Desktop power savings.

Currently, if your AnyType Middleware runs on the Desktop, you can't access your
knowledge base from your phone/laptop if the Desktop is off (or if you want to turn it
off to save the FX-8350's 125W TDP).

Action:
1. Move AnyType Middleware to the RPi 4 (aarch64).

2. # L4 Passthrough for AnyType Protocol
1443 {
tls {
on_demand
}
@anytype {
sn i anytype-grpc.domain.com
}
handle @anytype {
proxy_protocol tcp
reverse_proxy 192.168.1.51:31009 # Pi 4
}
}

3. Result: You can turn off your desktop completely. AnyType data lives on the
efficient Pi. You connect the Client only when you need to work.

Phase 4: The Al Orchestration (Jetson Optimization)
Goal: Ensure the Jetson is only doing Al work, not web serving.

1. Open WebUI + MCP
Deploy anytype-mcp on the RPi 4, not the Jetson.

e Why: The Jetson has 8GB unified RAM. You need every MB for the LLM context
window. Don't waste RAM on a Python MCP connector. Let the Jetson be the
"GPU Muscle."

2. The Workflow

e User - Rabbitholes - Jetson (Open WebUI) - Network Request - RPi 4 (MCP)
- RPi 4 (AnyType Middleware).

e [atency: Minimal (LAN speed).

e Benefit: Jetson stays responsive for generation.

Revised Project Plan: "The Carbon-Efficient Neural Stack"

Step 1: Infrastructure Sort (The "Tetris" Phase)
e Task: Assign static IPs to all nodes.
e Task: Install Docker on AtomicPi and Pi 4.

e Task: Ensure Time Sync (Chrony) is perfect across all nodes (critical for OAuth).

Step 2: Build the "Fat" n8n Image (On Desktop)
e Task: Write Dockerfile with anytype-client.
e Task: Build for 1inux/amdé4 .

e Task: Load onto AtomicPi.

Step 3: The "Sleepy" Services (Sablier on Jetson)
e Task: Configure Sablier on Jetson to wake iopaint (already done).
e Task: Configure Caddy on Pi 4 to route Al requests to Jetson.

e Test: Start an Al session. Verify Jetson wakes up, generates, and idles.

Step 4: The "Always On" Backbone (Pi 4)

e Task: Deploy PostgreSQL (low power usage).

e Task: Deploy AnyType Middleware.

e Task: Deploy Caddy (Main Gateway).

e Task: Configure caddy-14 to pass gRPC traffic to AnyType Middleware.

Step 5: The "Work" Server (AtomicPi)
¢ Task: Deploy n8n, Plane, Forgejo.
e Task: Connect n8n to PostgreSQL on Pi 4.

e Test: Create a workflow on n8n that sleeps for 1 hour. Monitor AtomicPi CPU/RAM
via htop.

Monitoring for the "Carbon Conscious" Engineer
Grafana Dashboard (The "Green" View):

1. Panel: "Cluster Wattage" (Approximate based on CPU load).

e Alert: If AtomicPi > 80% CPU for > 5 mins, ntfy alert. (It means the Atom
CPU is choking on a workflow).

2. Panel: "Jetson Thermal State".

e Alert: If Jetson > 60°C, slow down polling intervals.

3. Panel: "Desktop Status".

e Metric: Is it on? If yes, and no Forgejo activity for 2 hours - Send ntfy: "Go
to sleep, turn off the PC."

This setup respects your hardware limitations, minimizes power usage by right-sizing
services to specific architectures, and provides the robust "glue" you need.

We are running pi-hole for local DNS with unbound and filtering as well. The
internet gateway is a router running Asuswrt-Merlin with a VPN server for
internal access. We are using https://github.com/crazy-max/ddns-route53 for
dynamic DNS from AWS for our domain which is bitwise.ws the ddns tool
is on a cron that updates every 5 minutes. Most SBCs are running their
services on bare metal to avoid docker overhead and issues with ARM vs
x86_64 images. There are a few instances where this cannot be avoided, but
we tend to favor single executable solutions written in go or rust if possible.
All the stack described above is already running distributed across the SBCs
with the exception of the new addition to the project which is plane.io. To

round out the entire environment we are backing up using resticprofile
(https://creativeprojects.github.io/resticprofile/configuration/getting_started/i
ndex.html) to minio that writes to block storage on a local USB drive with
plans to eventually leverage AWS glacier for disaster recovery. There is also a
MariaDB instance that is leveraged by a few applications like Forgejo. Chat is
currently handled by our matrix server instance running tuwunel.

This is a highly refined, energy-conscious, and "OpSec" aware environment. You have
effectively built a mini-cloud using Go/Rust binaries for the heavy lifting (bare metal)
and reserving containerization for the complex, dependency-heavy application stacks.

The introduction of Plane is the only slight outlier because, while it is written in Go, it is
a complex monorepo (Web + Worker + Redis + DB) that makes bare-metal deployment
operationally expensive compared to a simple container.

Here is the implementation plan to integrate Plane, n8n, and the MCP bridge into your
existing bitwise.ws ecosystem, respecting your bare-metal preference and strict

backup/energy constraints.

Architecture Overview

Service Host
Access Method
Caddy Pi 4 / Router

*x.bitwise.ws
(Public/VPN)

MariaDB Atomic Pi

127.0.0.1:3306

(Local)
Forgejo Atomic Pi

forgejo.bitwise.
ws

Plane Atomic Pi

plane.bitwise.ws

n8n Atomic Pi
Internal Only

AnyType MCP Pi 4

TCP Socket

MinlO SBC (USB)

minio.bitwise.ws

Form Factor

Go Binary

Bare Metal

Go Binary

Docker

Docker

Binary/Script

Go Binary

Phase 1: Networking & DNS (The Foundation)

Database

N/A

N/A

MariaDB

MariaDB

SQLite/MariaDB

Local File

Disk

Goal: Ensure internal and external routing handles the new services via your existing

gateway.

1. Pi-hole Configuration

Since you use ddns-route53, your public IP is covered. Now ensure local resolution

for efficiency on the VPN/LAN.

e Action: Add Local A Records in Pi-hole:

e plane.bitwise.ws - Atomic PilLocal IP
e minio.bitwise.ws - SBC with USB Drive IP
e ai.bitwise.ws - Jetson Orin IP

2. Caddy (Go Binary) Configuration
Update your Caddyfile (or YAML) to route plane to the Atomic Pi and handle the

Plane specific headers.

plane.bitwise.ws {
reverse_proxy 127.0.0.1:3000 { # Map to container port on Atomic Pi
header_up Host {upstream_hostport}
header_up X-Real-IP {remote_host}
header_up X-Forwarded-For {remote_host}
header_up X-Forwarded-Proto {scheme}

Phase 2: Plane Deployment (The "Shared Resource" Strategy)
Goal: Deploy Plane without doubling your RAM footprint by reusing MariaDB.

The Challenge: Plane requires Redis and a Worker. Running this bare metal is a "toil"
trap. We will use Docker Compose on the Atomic Pi, but link it to your existing bare-
metal MariaDB.

1. Database Preparation (Bare Metal)
On the Atomic Pi, log into MariaDB:

CREATE DATABASE plane CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;
CREATE USER 'plane'@'%' IDENTIFIED BY 'strong_password';

GRANT ALL PRIVILEGES ON plane.* TO 'plane'@'%';

FLUSH PRIVILEGES;

2. Docker Compose (Atomic Pi)
Create a docker-compose.yml for Plane. Note that we omit the DB container and

point it to the host IP.

version: "3.8"

services:
redis:
image: redis:alpine
restart: always
volumes:

- redisdata:/data

web:
image: makeplane/plane:stable
restart: always
command: ./bin/web
environment:
- WEB_URL=https://plane.bitwise.ws
DATABASE_URL uses the bare metal MariaDB IP

- DATABASE_URL=mysql://plane:password@192.168.1.XX:3306/plane
- REDIS_URL=redis://redis:6379

ports:
- "3000:3000"

worker:
image: makeplane/plane:stable
restart: always
command: ./bin/worker
environment:
- DATABASE_URL=mysql://plane:password@192.168.1.XX:3306/plane
- REDIS_URL=redis://redis:6379

volumes:
redisdata:

Phase 3: The n8n Glue (Docker + Python Integration)
Goal: Build the automation bridge using the custom n8n image discussed earlier.

1. Build Custom n8n Image (on Desktop - Deploy to Atomic Pi)
Since n8n is Node-based but you need Python libraries (anytype-client), stick to
the Docker strategy.

® FROM n8nio/n8n
USER root
RUN apk add —no-cache python3 py3-pip
RUN pip3 install anytype-client requests
USER node

2. n8n Configuration
Configure n8n to connect to your Git (Forgejo) and Matrix (Tuwunel).

e Matrix Integration: Use the standard n8n Matrix node or a generic HTTP Request
node to push notifications to your tuwunel room.

» Workflow: Task Done in Plane - n8n - Matrix Message: "[%4 Task [ID]
Complete: [URL]".

Phase 4: AnyType MCP (The "Headless" Knowledge Base)
Goal: Enable the Al to access AnyType without loading the GUI on the Pi.

Since the Pi 4 is your "Always On" node and runs bare metal services:

1. Deploy Middleware: Run the AnyType Middleware (usually a container or binary)
on the Pi 4.

2. Deploy MCP: Run anytype-mcp (Python script) on the Pi 4.

3. Access: Configure your Caddy L4 module to forward mcp.bitwise.ws traffic to
the Pi 4, or allow internal LAN access only from the Jetson (Open WebUI).

Phase 5: Backup Strategy (resticprofile + MinlO)
Goal: Ensure the new Docker state is captured without bloat.

1. Plane Backup (The "Config" Approach)
Since Plane is using your bare-metal MariaDB, the Data is already covered if you are
backing up the MariaDB datadir (/var/1ib/mysql) via resticprofile.

e New Addition: You only need to backup the Redis snapshot and the Docker
Volume (which holds the Redis data).

e global:
priority: low
default:
password-file: /etc/restic/password
repository: s3:http://minio.bitwise.ws:9000/restic
env:
AWS_ACCESS_KEY_ID: xxx
AWS_SECRET_ACCESS_KEY: yyy

Backup the Plane Redis volume
planesnapshots:
backup:
source: /var/lib/docker/volumes/planedata/_data
schedule: "06:00"
retention:
keep-daily: 7

2. n8n Backup
n8n stores workflows in SQLite (by default) or MariaDB.

e Best Practice: Point n8n to use your existing MariaDB instance as well.

e Benefit: No new binary files to back up. The workflows live in the SQL dump of
MariaDB. Zero extra backup logic required.

Phase 6: ChatOps (Tuwunel Integration)

Goal: Lower the barrier to entry for task management.

Since you run tuwunel (Matrix), you can interface with your stack via chat.

Workflow:

1.
2.
3.
4.

Matrix User - Bot: "Create task in Plane: Update resticprofile."
n8n - Matrix: Reads message.
n8n - Plane API: Creates Issue "Update resticprofile".

n8n - Matrix: "Created Issue #42: https://plane.bitwise.ws/..."

Why this fits you:

Low Friction: You don't need to open a browser to create a task.

Mobile Friendly: You can manage tasks from your phone (Matrix client) without
loading heavy web pages.

Text First: Fits the CLI/Text preference of a Linux engineer.

Summary Checklist

DNS: Add plane and minio to Pi-hole.

DB: Create plane database in bare-metal MariaDB.

Docker: Deploy Plane (linked to MariaDB) on Atomic Pi.
Docker: Build/Deploy custom n8n (with Python) on Atomic Pi.
Config: Point n8n DB to MariaDB (Centralize data).

Backup: Add Docker volumes to resticprofile.

Caddy: Add route for plane.bitwise.ws.

MCP: Set up AnyType MCP on Pi 4.

This plan utilizes your existing Go/Rust binary foundation (Caddy, Forgejo, Tuwunel)
while pragmatically using Docker for the "modern web stack" components (Plane,
n8n), all centralized on your efficient Atomic Pi.

Just to be clear, Anytype is a desktop application and onlyu runs on the
developers desktop machine (Manjaro Linux), the MCP will have to interface
with this and it will only be active when the desktop is not hibernating.

Thank you for the clarification. This fundamentally shifts the "Brain" of the architecture
from the "Always-On" Pi 4 to the "High-Power" Desktop.

This introduces a specific challenge: The "High-Performance Node" is intermittent.

e When On: You have maximum context (AnyType) and Al power (Desktop
GPU/CPU).

e When Off: The "Context Loop" (Al accessing AnyType) breaks, and Automation
(Syncing tasks to Plane) fails.

Here is the adjusted plan that treats your Desktop (Manjaro) as the "Knowledge
Broker," integrating it with the rest of the cluster using WOL (Wake-on-LAN) and
aggressive backup strategies.

Revised Architecture: "Intermittent Brain"

Service Host Status Connectivity

AnyType Client Desktop (Manjaro) Intermittent (User Source of Truth
Session)

AnyType Desktop (Manjaro) Intermittent Exposed via Caddy

Middleware to LAN

AnyType MCP Desktop (Manjaro) Intermittent Connects Open

WebUI = AnyType

Plane Atomic Pi Always On Project Management

n8n Atomic Pi Always On The Bridge (Must
handle Desktop
being offline)

Phase 1: The Desktop Setup (Manjaro)
Goal: Prepare the Desktop to be a server-grade client.

1. AnyType Middleware Access
The AnyType app runs a local server/middleware for sync. We need n8n and the
Jetson to reach it.

e Action: Configure AnyType to listen on all interfaces (0.0.0.0) or configure a port
forward.

e Security: Ensure your Firewall (ufw or iptables on Manjaro) allows traffic from
the 192.168.1.x subnet (Atomic Pi, Jetson) to the AnyType port (default usually
varies, check logs).

2. Install anytype-mcp (The Al Bridge)
Since this runs on Manjaro, you can install it via Python.

e [Unit]
Description=AnyType MCP Server
After=network.target

[Service]
ExecStaxrt= /usr/bin/python3 /path/to/anytype-mcp/server.py

Restart=always

[Install]
WantedBy=default.target

e Result: When you log in, the MCP service starts automatically in the background.

3. Configure Open WebUI (on Jetson)
The Jetson needs to know where to look for the MCP server.

e Action: In Open WebUI Settings - Providers - MCP:
e Name: LocalAnytype

e Endpoint: http://<DESKTOP_IP>:<MCP_PORT> (e.g.,
http://192.168.1.20:8000)

Phase 2: The "Availability" Problem (Caddy + WOL)
Goal: Ensure n8n and Jetson can wake the Desktop if needed, or fail gracefully.

1. Caddy Routing (on Pi 4)
Update Caddy to route anytype.bitwise.ws to your Desktop.

anytype.bitwise.ws {
reverse_proxy 192.168.1.20:<AnyType_Port> {
header_up Host {upstream_hostport}
header_up X-Real-IP {remote_host}

h

2. Wake-on-LAN (WOL) Integration
Since your Desktop sleeps to save energy, the Atomic Pi (n8n) needs to wake it up to

sync tasks.

e #l/bin/bash
etherwake -i eth0® <Deskt op_MAC_Address>

¢ n8n Workflow: "The Heartbeat"
e Trigger: Every 15 mins.

e Node 1(Check): HTTP Request to anytype.bitwise.ws/health (if
available) or ping the Desktop.

* Node 2 (Decision):
e [f Online: Run the Sync Workflow.

e If Offline: Do Nothing (don't wake it up unnecessarily) OR Send ntfy
alert: "Desktop asleep - Task Sync Paused".

Phase 3: Automation Resilience (n8n Logic)
Goal: Handle the case where n8n tries to sync but the Desktop is off.
The Sync Workflow (Atomic Pi - Desktop):
1. Trigger: Schedule (Cron).
2. Check Desktop: Ping Desktop IP.
e [f False: Stop Workflow. (Save the energy/cycles).
e |f True: Proceed.
3. Fetch Data: Call AnyType Middleware (via Caddy) - Get Tasks.
4. Push to Plane: Send to Plane API.

5. Handle Error (Dropout): If the Desktop goes to sleep during the sync (step 3), the
HTTP Request will fail.

e Action: Use "Wait" node (retry after 30s) 3 times. If it still fails, drop the
workflow and try again in 15 mins.

Crucial Note: Do not use "Infinite Retry" in n8n. If the desktop is off for the night, you
don't want n8n hammering it every 5 seconds.

Phase 4: The "Data Loss" Prevention (Backup Strategy)

Goal: Since the Desktop is the "Single Source of Truth" for your Knowledge Base, and
it's a spinning mechanical drive (assuming older tech given the CPU specs), backups
are critical.

1. resticprofile Configuration (Manjaro)
You need to back up ~/.anytype to MinlO.

e Frequency: Every 2 hours (incremental).
e Hook: Run a backup before suspend.

2. Suspend Hook (Systemd)
Create a systemd service on Manjaro that runs a quick backup when you close the lid
or click suspend.

e [Service]
Type=oneshot
ExecStart=-/u sr/local/bin/backup_before_sleep.sh

e Why: If you have a brilliant idea, write it down, close your laptop, and the drive fails
on wake-up, your idea is safe in MinlO.

Phase 5: ChatOps (Tuwunel) & Remote Work
Goal: How do you manage tasks if you are on your laptop (not the Desktop)?

Since AnyType is locked to the Desktop, you cannot easily read notes from your
laptop.

e Workaround: Use Plane as the "Mobile View".
e Workflow:

* You are on Laptop. You need to know what to do.

You check Plane (always on Atomic Pi, accessible via VPN/Merlin).
* You see your tasks.
¢ You mark them done.

e Async Sync: When you get back to the Desktop, n8n wakes up, pulls the
"Done" status from Plane, and updates your local AnyType instance.

Summary of the "Desktop-Centric" Flow
1. Morning: You wake up. You turn on Desktop (Manjaro).
2. Start-up: Systemd starts AnyType and MCP Server.

3. Sync: n8n (Atomic Pi) detects Desktop is online. It pulls tasks from AnyType and
pushes them to Plane.

4. Work:

e You work in Rabbitholes (Jetson). It queries AnyType MCP (Desktop) for
context.

e You track progress in Plane (Browser).
* n8n keeps them in sync.
5. End of Day: You close Desktop.
e Hook triggers backup to MinlO.
¢ n8n marks Desktop as "Offline" and pauses syncing.

¢ Plane continues to run on Atomic Pi (accessible from phone/laptop), holding
the current state of the project.

This plan respects the hardware constraints and the "Brain on Desktop" reality while
ensuring you don't lose data or sync capability.

Rabbitholes is also a desktop application that is not a service. We can
assume all development is done through the desktop and there is no
remote "development" work other than maintenance and reporting.

¢

This is the cleanest architectural model yet. By treating the Desktop as the
Workstation and the SBCs as Infrastructure/Compute, we eliminate the friction of
working "remotely."

We are building a Local High-Performance Cluster where your Desktop is the "User
Node," the Jetson is the "Compute Node," and the Atomic Pi is the "Service Node."

The Final Architecture: "Local Cloud"

Node Role Services State

Desktop (Manjaro) Creator AnyType, "On" when you
Rabbitholes, work.
anytype-mcp

Jetson Orin Compute Open WebUI (LLM), "Always On" (Low
iopaint power idle).

Atomic Pi Infrastructure Plane, n8n, Forgejo, "Always On".
MariaDB

Pi 4 / Router Network/Storage Caddy, MinlO, Pi- "Always On".

hole

Phase 1: The "Al Loop" (Desktop + Jetson)

Goal: Connect your interface (Rabbitholes) to your brain (Jetson) and your memory
(AnyType).

This loop relies on LAN communication between the Desktop and the Jetson.
1. The Desktop Setup (Manjaro)

e Service 1: AnyType Middleware: Ensure it's running.

e Service 2: anytype-mcp Server:

e Since this needs to be reachable by the Jetson, configure it to listen on the
LANIP (e.g.,, 0.0.0.0:8000).

e Systemd: Create a user service to auto-start this when you log in.
e Service 3: Rabbitholes:
e Configure Custom Base URL / API Endpoint.

e Point it to your Jetson's Open WebUI instance:
http://192.168.1.60:3000 (or whatever port Open WebUI uses).

2. The Jetson Setup (Compute)
e Service 1: Open WebUI:
e MCP Configuration: This is the critical bridge.
* |n Open WebUI settings, add the MCP server running on your Desktop:
e Name: AnyType-LAN

e Endpoint: http://192.168.1.20:8000/sse (or your specific MCP
port).

e Why this works:
1. You type a prompt in Rabbitholes.
. Rabbitholes sends it to Jetson (Open WebUI).
. The Al needs context. It calls the MCP Server.

2

3

4. The request goes over LAN to your Desktop (anytype-mcp).

5. Desktop fetches data from local AnyType and returns it to Jetson.
6

. Jetson generates the response and sends it back to Rabbitholes.

Phase 2: The "Persistence Loop" (Desktop + Atomic Pi)
Goal: Automate the flow of ideas (Desktop) into tasks (Atomic Pi).

Since development is local, the Atomic Pi (n8n) acts as a passive listener until the
Desktop wakes up.

1. The Wake/Sync Cycle (n8n on Atomic Pi)

e Workflow Logic:
1. Trigger: Every 30 mins (or wake from WOL).

2. Ping: Canyoureach 192.168.1.20 (Desktop)?
e No: Sleep.
® Yes: Proceed.
3. Sync:
e Get "Backlog" items from AnyType (via Caddy/Tunnel).
e Create/Update issues in Plane.
4. Reverse Sync:
e Check Forgejo/Plane for "Completed" items.

e Update AnyType status to "Done".

2. Caddy Routing (Pi 4)
Ensure Caddy has a route to allow the Atomic Pi to reach the Desktop (though direct
LAN IP is fine, Caddy provides SSL/Hardening if the payload is sensitive).

e Recommendation: For internal LAN traffic (n8n - Desktop), direct HTTP is usually
fine, but since you are security conscious, routing

anytype.internal.bitwise.ws through Caddy on the Pito the Desktop is
cleaner.

Phase 3: Development Workflow (The "Happy Path")
How a typical work session looks in this environment.
1. Boot Up
® You turn on the Desktop.
e Systemd starts AnyType and anytype-mcp.
e Desktop connects to LAN.
2. ldeation (The RAM)
* You open Rabbitholes.

® You start researching. The Jetson handles the LLM inference.

* You ask: "What was the architectural decision for the API key?"

e Rabbitholes - Jetson - Desktop (AnyType) - Answer.

® You synthesize this into a "Task Object" inside AnyType. Status: Backlog .
3. Execution (The Handoff)

e You open Plane (in browser).

e Wait 30 mins (or manually trigger n8n).

® n8n detects the new AnyType Task - Creates Issue in Plane.

* Youdragthelssueto In Progress.
4. Coding

e You open VS Code (Desktop).

¢ You push code to Forgejo.

® You link the commit to the Plane Issue (via native Git integration).
5. Shutdown

* You close your apps.

e Restic backup runs (hooked to systemd suspend).

e Desktop sleeps.
6. Mobile/Remote Check (Maintenance Mode)

e You are on your phone (VPN connected).

e You open Plane (hosted on Atomic Pi) via plane.bitwise.ws.

® You check the project status. Everything is there, synced from your desktop
session.

® You cannot access AnyType notes (Desktop is off), but you can manage the tasks
and code.

Phase 4: Backup & Safety (Restic + MinlO)
Goal: Protect the data that lives on the unreliable/intermittent Desktop.
1. The "Pre-Sleep" Hook

e On Manjaro, create a systemd service that runs before suspend:

e ExecStart=/usr/bin/resticprofile -config
/etc/resticprofile/profiles.conf backup

e This ensures your latest AnyType notes (which are not on the Pi) are snapped to
MinlO before the power cuts.

2. Off-Site (Disaster Recovery)
e MinlO (Local): Immediate access.
e AWS Glacier (Eventually): As planned.

e Workflow: Once a week, a cron job on the Atomic Pi (which is always on) pushes
the contents of the MinlO bucket to Glacier.

Summary of Network Traffic

1. Desktop - Jetson: Prompt / Inference Request.

2. Jetson - Desktop: MCP Context Query.

3. Atomic Pi - Desktop: Sync Requests (Polling).

4. Atomic Pi - Pi 4: Database Storage.

5. All Devices - Pi 4: DNS (Pi-hole) / Gateway (Caddy).

This setup maximizes the performance of your Desktop while offloading the battery-
draining Al inference to the Jetson and the maintenance overhead to the Atomic Pi. It is
a cohesive, energy-efficient "Personal Cloud."

Is it possible to present this solution we have developed "visually" in a
diagram or info graphic that | can talk to with people not familiar with the

e

details of some of the implementation, so that they have some idea about
what is being done?

Here is a high-level visual representation of your architecture using Mermaid. This
diagram is designed to be understood by non-technical stakeholders. It focuses on
Data Flow and Function rather than specific code implementations.

You can paste the code block below into any Markdown viewer (like GitHub, GitLab, or
Notion) to see the rendered diagram.

The Visual Architecture

graph TB
%% Styles
classDef user fill:#ffcccc,stroke:#333,stroke-width:2px
classDef workstation fill:#eb6f2ff,stroke:#004080,stroke-width:2px
classDef compute fill:#ebffeb,stroke:#006600,stroke-width:2px
classDef infra fill:#f0ebff,stroke:#4b0082,stroke-width:2px
classDef cloud fill:#f9f9f9,stroke:#999,stroke-dasharray: 5 5

subgraph User_Environment ["Creator Zone (Desktop)"]
User["You (The Engineer)"]
AnyType (("Knowledge Base
(AnyType)"))
Rabbitholes(("Creative Interface
(Rabbitholes)"))

User --> Rabbitholes

User --> AnyType

Rabbitholes -.->|Context Check| AnyType
end

subgraph AI_Environment ["Intelligence Zone (Jetson Orin)"]
OpenWebUI["AI Brain
(0pen WebUI)"]
MCP_Bridge["Context Bridge
(MCP Server)"]

Rabbitholes -->|Prompts| OpenWebUI

OpenWebUI <-.->|Data Requests| MCP_Bridge

MCP_Bridge -.->|LAN Connection| AnyType
end

subgraph Service_Environment ["Infrastructure Zone (Atomic Pi)"]
n8n["Automation Glue
(n8n)"]
Plane["Task Manager
(Plane)"]
Forgejo["Code Repository
(Forgejo)"]

AnyType -.->|Sync Tasks| n8n

n8n -->|Create/Update| Plane

n8n -->|Backup Code| Forgejo
end

subgraph Data_Environment ["Storage & Network (Pi 4 / Router)"]
Backup["Secure Vault
(MinIO / Glacier)"]
Gateway["Gateway & DNS
(Caddy / Pi-hole)"]

Plane -->|Long-term Storage| Backup
AnyType -->|Snapshots| Backup
Gateway -.->|Secure Tunnel| n8n

Gateway -.->|Secure Tunnel| Plane
end

%% Class assignments

class User user

class AnyType,Rabbitholes workstation
class OpenWebUI,MCP_Bridge compute
class n8n,Plane,Forgejo infra

class Backup,Gateway cloud

Al Brain
({Open WebUI)

4
IntelligerData Rx'aquests-nn Cirin)

¥

Context Bridge
(MCP Server)

TTULAN Connection

Gateway & DNS
{Caddy ! Pi-hole)

Snapshots

ane & Metwork {.Pi‘4 ! Router)

Secure Tunnel .

You (The Engineer)

Creative Interface
(Rabbitholes)

| -Prompts

Creator Zone (Desktop)

Conte:;t Check

Knowledge Base
(AnyType)

Sync Tasks

Secure Tunnel.| .

¥

Automation Glue
{n8n)

Createrpd':altE astructure Zone (Atom

Backup Code

w1y \

Task Manager
(Plane)

Code Repository
(Fargejo)

7

| _.---"""""r

Long-term Storage

Explanat&gn for lS)ake‘lﬁﬁers (The "Elevator Pitch")

f ygu need to explain this to peopld who don't know what "MCP" or "Docker" is, use

Secure Vault

this|analegyo / ciacien

This system is designed like a high-end production studio, optimized for a single
expert creator (You).

1. The Creator Zone (Your Desktop)
e Whatitis: This is your main workstation where the actual creative work happens.

e The Tools:

e AnyType: This is your digital filing cabinet. It's where you store your
thoughts, plans, and ideas. It lives on your main computer.

e Rabbitholes: This is your workbench. It's the interface you use to
brainstorm and research.

2. The Intelligence Zone (The Jetson)

e Whatitis: Think of this as a "super-intelligent assistant" that sits next to you. It is a
powerful computer dedicated to helping you think.

e How it works: When you ask a question in Rabbitholes, the Jetson handles the
complex thinking. Crucially, it has a "phone line" (MCP) to your filing cabinet
(AnyType), so it can answer questions based on your own notes, not just the
internet.

3. The Infrastructure Zone (The Atomic Pi)

e Whatitis: This is the "Project Management Office." It's a small, efficient server
that runs in the background 24/7.

e Why it's there:

e Plane: This is your project tracker. It takes the ideas from your filing cabinet
and turns them into actionable to-do lists.

e Automation (n8n): This is the butler. When you add a task to your filing
cabinet, the butler notices and automatically moves it to your project tracker
so you don't forget it.

4. The Storage & Network (Pi 4 / Router)

e Whatitis: This is the foundation. It keeps the internet safe (Pi-hole), manages the
keys to the door (Caddy), and stores the backups (MinlO).

Summary for the Audience

"I have built a system that allows me to work creatively on my main computer,
while offloading the heavy-duty thinking and organization to specialized, low-
energy devices in the background. It connects my ideas (AnyType) with my Al
assistance (Jetson) and my tasks (Plane) automatically, ensuring nothing gets lost
and minimizing my mental load."

